Self-consistent Sierpinski iteration of toughening mechanism in elastomer undergoing scaled segment-chain-network

Author:

Xing Ziyu1,Lu Haibao1ORCID,Fu Yong-Qing2

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, People's Republic of China

2. Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, UK

Abstract

Understanding working principles and toughening mechanisms of soft elastomers has been a huge challenge due to their significant scaling effects from molecules to bulk polymer. In this study, by combining Sierpinski fractal and scaling theory, an extended Kelvin model is developed to investigate the mechanical behaviour of the soft elastomer undergoing scaled segment-chain-network. According to the scaling theory, a radial distribution function was initially introduced to explain the diffusion and relaxation behaviours of molecular segments with the Sierpinski fractal features. The self-consistent iteration of the Sierpinski fractal is then used to describe the scaling effects of segments and networks. Rubber elasticity of the polymer network is further formulated based on the self-consistent iteration equation and scaling theory. A constitutive stress–strain relationship is also derived to explore the toughness mechanism and working principle in the polymer elastomer. Finally, the effectiveness of the proposed model is verified using finite-element analysis and experimental results reported in the literature, to explore a scaling insight into toughening mechanisms of elastomers governed by the self-consistent Sierpinski iteration.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3