Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions

Author:

Ghanim Firas1ORCID,Bendak Salaheddine2,Al Hawarneh Alaa3

Affiliation:

1. Department of Mathematics, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates

2. Department of Industrial Engineering, Faculty of Engineering, Halic University, Beyoglu, Istanbul, Turkey

3. School of Engineering, The University of British Columbia, Kelowna, Canada

Abstract

The Mittag-Leffler function and confluent hypergeometric functions were created to approximate interpolation in exponential functions. The researchers noted that Prabhakar’s integral transformation, which involves extended multi-parameter Mittag-Leffler functions, may be used to create and explore different fractional calculus models. This four-parameter function is further illustrated in graphs using MATLAB. With classical (Riemann–Liouville) fractional integrals, the research shows a set of formulations for these fractional differintegral operators. Moreover, using AB Model results of Prabhakar and the generalized Prabhakar models, the authors use a series of formulae to come up with new results. This paper demonstrates how this series formula may be used to provide simple alternative evidence for numerous well-known effects of Prabhakar differintegrals.

Funder

University of Sharjah

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference70 articles.

1. Miller KS, Ross B. 1993 An introduction to the fractional calculus and fractional differential equations. New York, NY: Wiley.

2. Oldham KB, Spanier J. 1974 The fractional calculus. San Diego, CA: Academic Press.

3. Samko SG, Kilbasamd AA, Marichev OI. 1993 Fractional integrals and derivatives: theory and applications. London, UK: Taylor and Francis.

4. Analytical Study of Two Nonlinear Coupled Hybrid Systems Involving Generalized Hilfer Fractional Operators

5. New Modifications of Integral Inequalities via ℘-Convexity Pertaining to Fractional Calculus and Their Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3