Affiliation:
1. Mathematical Institute, University of Oxford, Radcliffe Observatory, Andrew Wiles Building, Woodstock Rd, Oxford OX2 6GG, UK
Abstract
In this paper, we study how randomly generated knots occupy a volume of space using topological methods. To this end, we consider the evolution of the first homology of an immersed metric neighbourhood of a knot’s embedding for growing radii. Specifically, we extract features from the persistent homology (PH) of the Vietoris–Rips complexes built from point clouds associated with knots. Statistical analysis of our data shows the existence of increasing correlations between geometric quantities associated with the embedding and PH-based features, as a function of the knots’ lengths. We further study the variation of these correlations for different knot types. Finally, this framework also allows us to define a simple notion of deviation from ideal configurations of knots.
Funder
H2020 European Research Council
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献