Zig-zag dynamics in a Stern–Gerlach spin measurement

Author:

Krekels Simon12ORCID,Maes Christian1ORCID,Meerts Kasper1ORCID,Struyve Ward13ORCID

Affiliation:

1. Department of Physics and Astronomy, KU Leuven, Belgium

2. Imec, Leuven, Belgium

3. Centre for Logic and Philosophy of Science, KU Leuven, Belgium

Abstract

The century-old Stern–Gerlach setup is paradigmatic for a quantum measurement. We visualize the electron trajectories following the Bohmian zig-zag dynamics. This dynamics was developed in order to deal with the fundamentally massless nature of particles (with mass emerging from the Brout–Englert–Higgs mechanism). The corresponding trajectories exhibit a stochastic zig-zagging, as the result of the coupling between left- and right-handed chiral Weyl states. This zig-zagging persists in the non-relativistic limit, which will be considered here, and which is described by the Pauli equation for a non-uniform external magnetic field. Our results clarify the different meanings of ‘spin’ as a property of the wave function and as a random variable in the Stern–Gerlach setup, and they illustrate the notion of effective collapse. We also examine the case of an EPR-pair. By letting one of the entangled particles pass through a Stern–Gerlach device, the non-local influence (action-at-a-distance) on the other particle is manifest in its trajectory, e.g. by initiating its zig-zagging.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

The Royal Society

Reference52 articles.

1. Bohm D, Hiley B. 1993 The undivided universe: an ontological interpretation of quantum theory. New York, NY: Routledge.

2. The Quantum Theory of Motion

3. The Macroscopic World

4. Trajectories and particle creation and annihilation in quantum field theory

5. Quantum Hamiltonians and Stochastic Jumps

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constant speed random particles spontaneously confined on the surface of an expanding sphere;Journal of Statistical Mechanics: Theory and Experiment;2024-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3