Response theory and phase transitions for the thermodynamic limit of interacting identical systems

Author:

Lucarini Valerio12ORCID,Pavliotis Grigorios A.3,Zagli Niccolò123

Affiliation:

1. Department of Mathematics and Statistics, University of Reading, Reading, UK

2. Centre for the Mathematics of Planet Earth, University of Reading, Reading, UK

3. Department of Mathematics, Imperial College London, London, UK

Abstract

We study the response to perturbations in the thermodynamic limit of a network of coupled identical agents undergoing a stochastic evolution which, in general, describes non-equilibrium conditions. All systems are nudged towards the common centre of mass. We derive Kramers–Kronig relations and sum rules for the linear susceptibilities obtained through mean field Fokker–Planck equations and then propose corrections relevant for the macroscopic case, which incorporates in a self-consistent way the effect of the mutual interaction between the systems. Such an interaction creates a memory effect. We are able to derive conditions determining the occurrence of phase transitions specifically due to system-to-system interactions. Such phase transitions exist in the thermodynamic limit and are associated with the divergence of the linear response but are not accompanied by the divergence in the integrated autocorrelation time for a suitably defined observable. We clarify that such endogenous phase transitions are fundamentally different from other pathologies in the linear response that can be framed in the context of critical transitions. Finally, we show how our results can elucidate the properties of the Desai–Zwanzig model and of the Bonilla–Casado–Morillo model, which feature paradigmatic equilibrium and non-equilibrium phase transitions, respectively.

Funder

J.P. Morgan Chase

Engineering and Physical Sciences Research Council

H2020 Environment

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimension reduction of noisy interacting systems;Physical Review Research;2023-02-03

2. On some aspects of the response to stochastic and deterministic forcings;Journal of Physics A: Mathematical and Theoretical;2022-10-21

3. Reduced Markovian Descriptions of Brownian Dynamics: Toward an Exact Theory;Frontiers in Physics;2022-05-11

4. In Silico Prediction of Food Properties: A Multiscale Perspective;Frontiers in Chemical Engineering;2022-01-21

5. Predictors and predictands of linear response in spatially extended systems;The European Physical Journal Special Topics;2021-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3