Review of the exponential and Cayley map on SE(3) as relevant for Lie group integration of the generalized Poisson equation and flexible multibody systems

Author:

Müller Andreas1ORCID

Affiliation:

1. Johannes Kepler University, Linz, Austria

Abstract

The exponential and Cayley maps on SE(3) are the prevailing coordinate maps used in Lie group integration schemes for rigid body and flexible body systems. Such geometric integrators are the Munthe–Kaas and generalized- α schemes, which involve the differential and its directional derivative of the respective coordinate map. Relevant closed form expressions, which were reported over the last two decades, are scattered in the literature, and some are reported without proof. This paper provides a reference summarizing all relevant closed-form relations along with the relevant proofs, including the right-trivialized differential of the exponential and Cayley map and their directional derivatives (resembling the Hessian). The latter gives rise to an implicit generalized- α scheme for rigid/flexible multibody systems in terms of the Cayley map with improved computational efficiency.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference84 articles.

1. Murray R, Li Z, Sastry S. 1994 A mathematical introduction to robotic manipulation. Boca Raton, FL: CRC Press.

2. Screw and Lie group theory in multibody kinematics

3. Darboux G. 1887 Leçons sur la théorie généles applications géométriques du calcul infinitesimal vol. 4. Paris France: Gauthier-Villars.

4. Condurache D. 2017 Poisson-Darboux problems extended in dual Lie algebra. In AAS/AIAA Astrodynamics Specialist Conf. Stevenson WA USA .

5. On the exponential solution of differential equations for a linear operator

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design, Analysis, and Validation of a Passive Parallel Continuum Ankle Exoskeleton for Support and Walking Assistance;Journal of Mechanisms and Robotics;2024-09-03

2. Going with the Flow;ACM Transactions on Graphics;2024-07-19

3. Efficient explicit time integration algorithms for non-spherical granular dynamics on group S(3);Computational Particle Mechanics;2024-06-23

4. On the Numerical Integration of the Multidimensional Kuramoto Model;Brazilian Journal of Physics;2024-05-29

5. Research on SINS/DVL integrated navigation method based on error state model;2024 the 8th International Conference on Innovation in Artificial Intelligence;2024-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3