Gaussian process deconvolution

Author:

Tobar Felipe1ORCID,Robert Arnaud2,Silva Jorge F.3

Affiliation:

1. Initiative for Data and Artificial Intelligence, Universidad de Chile, Santiago de Chile, Chile

2. Department of Computing, Imperial College London, London, UK

3. Department of Electrical and Electronic Engineering, Universidad de Chile, Santiago de Chile, Chile

Abstract

Let us consider the deconvolution problem, i.e. to recover a latent sourcex()from the observationsy=[y1,,yN]of a convolution processy=xh+η, whereηis an additive noise, the observations inymight have missing parts with respect toy, and the filterhcould be unknown. We propose a novel strategy to address this task whenxis a continuous-time signal: we adopt a Gaussian process prior on the sourcex, which allows for closed-form Bayesian non-parametric deconvolution. We first analyse the direct model to establish the conditions under which the model is well-defined. Then, we turn to the inverse problem, where we study (i) some necessary conditions under which Bayesian deconvolution is feasible and (ii) to which extent the filterhcan be learned from data or approximated for the blind deconvolution case. The proposed approach, termed Gaussian process deconvolution, is compared to other deconvolution methods conceptually, via illustrative examples, and using real-world datasets.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Agencia Nacional de Investigación y Desarrollo

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference47 articles.

1. Wang H Sreejith S Lin Y Ramachandra N Slosar A Yoo S. 2022 Neural network based point spread function deconvolution for astronomical applications. (http://arxiv.org/abs/2210.01666)

2. Clapp T Godsill S. 1997 Bayesian blind deconvolution for mobile communications. In IEE Colloquium Adaptive Signal Processing for Mobile Communication Systems (Ref. No. 1997/383) London UK 29 October 1997 pp. 9/1–9/6. New York NY: IEEE.

3. Time reversal focusing of high amplitude sound in a reverberation chamber

4. Deconvolution of Seismic Data - An Overview

5. Fast Deconvolution for Motion Blur Along the Blurring Paths

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3