Affiliation:
1. Department of Mathematics, City, University of London, Northampton Square, London EC1V 0HB, UK
Abstract
Evolutionary game theory has proved to be a powerful tool to probe the self-organization of collective behaviour by considering frequency-dependent fitness in evolutionary processes. It has shown that the stability of a strategy depends not only on the payoffs received after each encounter but also on the population’s size. Here, we study
2
×
2
games in well-mixed finite populations by analyzing the fixation probabilities of single mutants as functions of population size. We proved that nine of the 24 possible games always lead to monotonically decreasing functions, similarly to fixed fitness scenarios. However, fixation functions showed increasing regions under 12 distinct anti-coordination, coordination and dominance games. Perhaps counter-intuitively, this establishes that single-mutant strategies often benefit from being in larger populations. Fixation functions that increase from a global minimum to a positive asymptotic value are pervasive but may have been easily concealed by the weak selection limit. We obtained sufficient conditions to observe fixation increasing for small populations and three distinct ways this can occur. Finally, we describe fixation functions with the increasing regions bounded by two extremes under intermediate population sizes. We associate their occurrence with transitions from having one global extreme to other shapes.
Funder
H2020 Marie Skłodowska-Curie Actions
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Reference50 articles.
1. Honest signalling: the Philip Sidney game
2. Signals
3. Some dynamics of signaling games
4. Axelrod R. 1984 The evolution of cooperation. New York, NY: Basic Books.
5. Poundstone W. 1992 Prisoner’s Dilemma: John von Neumann, game theory and the puzzle of the bomb. New York, NY: Anchor Books.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献