Weber’s Law of perception is a consequence of resolving the intensity of natural scintillating light and sound with the least possible error

Author:

Pednekar Shourav1ORCID,Krishnadas Arun1,Cho Byunggu1ORCID,Makris Nicholas C.1ORCID

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Efficient resolution of natural light and sound intensity is essential for organisms, systems and machines that rely on visual and auditory sensory perception to survive or function effectively in their environment. This resolution obeys Weber’s Law when the smallest resolvable change, a just-noticeable-difference, grows in direct proportion to the stimulus. Here, Weber’s Law is found to be a consequence of attaining the theoretical minimum mean-square error possible, the Cramer–Rao lower bound, in resolving the intensity of naturally scintillating light and sound. The finding is based on statistics from thousands of measurements of naturally scintillating environmental light and sound signals. Remarkably, just-noticeable-differences in light and sound intensity measured over decades of psychophysical experiments with artificial sources are also found to approximately attain the respective Cramer–Rao lower bounds. Human intensity resolution is in this way optimally adapted to the natural scintillation of light and sound. Pattern recognition by simple matched-filter correlation between measured and hypothetical images cancels natural scintillation. For intensity perception obeying Weber’s Law, this is found to be advantageous and statistically optimal because perceived scintillation is independent of the underlying signal pattern. A small visual patch change or acoustic signature truncation is shown to be lost in natural signal-dependent fluctuations if perception with constant intensity resolution is attempted.

Funder

William I. Koch Professor of Marine Technology Chair, Massachusetts Institute of Technology

MIT Bose Fellowship

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3