Strategies for guided acoustic wave inspection using mobile robots

Author:

Zhang Jie1ORCID,Niu Xudong1,Croxford Anthony J.1,Drinkwater Bruce W.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR, UK

Abstract

Continuous non-destructive monitoring of large-scale structures is extremely challenging with traditional manual inspections. In this paper, we explore possible strategies that a collection of inspection robots could adopt to address this challenge. We envision the continuous inspection of a plate performed by multiple robots or a single robot that combines measurements from multiple locations. The robots use guided ultrasonic waves to interrogate a localized region for defects such as cracking or corrosion. In the detection stage, the receiver operating characteristic defines a detection zone in which a defect is thought to be present. In the localization stage, further measurements are made to locate the defect within this zone to a certain accuracy. We then address the question of what additional measurements are needed to achieve a given level of performance in the presence of uncertainty in robot locations? We explore this problem with Monte Carlo simulations that reveal the compromise between number of robots and performance in terms of defect location accuracy. In an experimental validation example on an aluminium plate, we show that six measurements arranged in a pentagon with a central measurement point leads to localization errors of similar magnitude to the uncertainty in sensor location.

Funder

UK's Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference55 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3