Swell-induced flexural vibrations of a thickening ice shelf over a shoaling seabed

Author:

Meylan Michael H.1ORCID,Ilyas Muhammad1,Lamichhane Bishnu P.1,Bennetts Luke G.2ORCID

Affiliation:

1. School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia

2. School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

A solution method is developed for a linear model of ice shelf flexural vibrations in response to ocean waves, in which the ice shelf thickness and seabed beneath the ice shelf vary over distance, and the ice shelf/sub–ice-shelf cavity are connected to the open ocean. The method combines a decomposition of the ice shelf displacement profile at a prescribed frequency of motion into mode shapes of free vibrations, a finite-element method for the cavity water motion and a non-local operator to connect to the open ocean. An investigation is conducted into the effects of ice shelf thickening, seabed shoaling and the grounding-line conditions on time-harmonic ice shelf vibrations, induced by regular incident waves in the swell regime. Furthermore, results are given for ice shelf vibrations in response to irregular incident waves by superposing time-harmonic responses, and ocean-to-ice-shelf transfer functions are derived. The findings add to evidence that ice shelves experience appreciable flexural vibrations in response to swell, and that ice shelf thickening and seabed shoaling can have a considerable influence on predictions of how ice shelves respond to ocean waves.

Funder

Australian Antarctic Division

Australian Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3