The contribution of plastic sink-in to the static friction of single asperity microscopic contacts

Author:

Brazil Owen1ORCID,Pethica John B.2,Pharr George M.1

Affiliation:

1. Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77840, USA

2. School of Physics, CRANN and AMBER, Trinity College Dublin, Dublin, Ireland

Abstract

We report microscale friction experiments for diamond/metal and diamond/silica contacts under gigapascal contact pressures. Using a new nanoprobe technique that has a sufficient dynamic range of force and stiffness, we demonstrate the processes involved in the transition from purely interface sliding at the nanoscale to the situation where at least one of the sliding bodies undergoes some plastic deformation. For sliding of micrometre-sized tips on metallic substrates, additional local plastic yielding of the substrate resulting from tangential tractions causes the tip to sink into the surface, increasing the contact area in the direction of loading and resulting in a static friction coefficient higher than the kinetic during ploughing. This sink-in is largely absent in fused silica, and no friction drop is observed, along with lower friction in general. The transition from sink-in within the static friction regime to ploughing in the sliding friction regime is mediated by failure of the contact interface, indicated by a sharp increase in energy dissipation. At lower contact pressures, the elastic interfacial sliding behaviour characteristic of scanning probe or surface force apparatus experiments is recovered, bridging the gap between the exotic realm of nanotribology and plasticity-dominated macroscale friction.

Funder

Texas A&M University President's Excellence Fund X-Grants Program

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference49 articles.

1. Bowden FP, Tabor D. 1950 The friction and lubrication of solids. Oxford, UK: Oxford University Press.

2. Hutchings I, Shipway P. 2017 Tribology – friction and wear of engineering materials, 2nd edn. Oxford, UK: Butterworth-Heineman.

3. Tribology on the Small Scale

4. On the nature of running-in

5. Friction-the present state of our understanding;Tabor D;J. Tribol.,1981

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanoindentation in more than one dimension – Experimental challenges and opportunities;Current Opinion in Solid State and Materials Science;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3