Affiliation:
1. Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
Abstract
In this article, we consider the development of unbiased estimators of the Hessian, of the log-likelihood function with respect to parameters, for partially observed diffusion processes. These processes arise in numerous applications, where such diffusions require derivative information, either through the Jacobian or Hessian matrix. As time-discretizations of diffusions induce a bias, we provide an unbiased estimator of the Hessian. This is based on using Girsanov’s Theorem and randomization schemes developed through Mcleish (2011
Monte Carlo Methods Appl.
17
, 301–315 (
doi:10.1515/mcma.2011.013
)) and Rhee & Glynn (2016
Op. Res.
63
, 1026–1043). We demonstrate our developed estimator of the Hessian is unbiased, and one of finite variance. We numerically test and verify this by comparing the methodology here to that of a newly proposed particle filtering methodology. We test this on a range of diffusion models, which include different Ornstein–Uhlenbeck processes and the Fitzhugh–Nagumo model, arising in neuroscience.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献