Marine and continental food webs: three paradoxes?

Author:

Abstract

Carbon stocks and flows give a picture of marine and continental biotas different from that based on food webs. Measured per unit of volume or per unit of surface area, biomass is thousands to hundreds of thousands of times more dilute in the oceans than on the continents. The number of described species is lower for the oceans than for the continents. One might expect that each species of organism would therefore feed on or be consumed by fewer other species in the oceans than on the continents. Yet in reported food webs, the average oceanic species interacts trophically with more other species than the average terrestrial or aquatic species. Carbon turnover times imply that the mean adult body length of oceanic organisms is 240 to 730 times shorter than that of continental organisms. By contrast, in reported food webs, marine animal predators are larger than continental animal predators, and marine animal prey are larger than continental animal prey, by as much as one to two orders of magnitude. Estimates of net primary productivity (NPP) per unit of surface area or per unit of occupied volume indicate that the oceans are several to hundreds of times less productive than the continents, on average. If NPP limited mean chain length in food webs, oceanic food chains should be shorter than continental chains. Yet average chain lengths reported in published food webs are longer in oceans than on land or in fresh water. In reconciling these unexpected contrasts, the challenge is to determine which (if any) of the many plausible explanations is or are correct.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference74 articles.

1. Vertical distribution of the standing crop of plankton and micronekton at three stations in the northeast;Angel M.V.;Atlantic. Biol. Oceanogr.,1982

2. Angel M.V. 1993 Biodiversity of the pelagic ocean. Conserv. Biol. (In the press.)

3. Beebe W. 1926 The Arcturus adventure. New York: Harper Colophon Books.

4. Berger W.H. 1989 Appendix: global maps of ocean productivity. In Productivity of the ocean: present andpast (ed. W. H. Berger V. S. Smetacek & G. Wefer) (Life Sciences Research Report 44 Dahlem Workshop Berlin April 24-29 1988) pp. 429-455. Chichester New York: John Wiley.

5. Bonner J.T. 1965 Size and cycle: an essay on the structure of biology. Princeton University Press.

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3