Affiliation:
1. CNR Centre of Cytopharmacology, Department of Neurosciences, Dibit, Italy and ‘Bruno Ceccarelli’ Centre for Studies in Neurobiology, University of Milano, via Olgettina 58, 20132 Milano, Italy
Abstract
Current views on quantal release of neurotransmitters hold that after the vesicle migrates towards release sites (active zones), multiple protein interactions mediate the docking of the vesicle to the presynaptic membrane and the formation of a multimolecular protein complex (the ‘fusion machine’) which ultimately makes the vesicle competent to release a quantum in response to the action potential. Classical biophysical studies of quantal release have modelled the process by a binomial system where n vesicles (sites) competent for exocytosis release a quantum, with probability
p
, in response to the action potential. This is likely to be an oversimplified model. Furthermore, statistical and kinetic studies have given results which are difficult to reconcile within this framework. Here, data are presented and discussed which suggest a revision of the biophysical model. Transient silencing of release is shown to occur following the pulse of synchronous transmitter release, which is evoked by the presynaptic action potential. This points to a schema where the vesicle fusion complex assembly is a reversible, stochastic process. Asynchronous exocytosis may occur at several intermediate stages in the process, along paths which may be differentially regulated by divalent cations or other factors. The fusion complex becomes competent for synchronous release (armed vesicles) only at appropriately organized sites. The action potential then triggers (deterministically rather than stochastically) the synchronous discharge of all armed vesicles. The existence of a specific conformation for the fusion complex to be competent for synchronous evoked fusion reconciles statistical and kinetic results during repetitive stimulation and helps explain the specific effects of toxins and genetic manipulation on the synchronization of release in response to an action potential.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献