The radular apparatus of cephalopods

Author:

Messenger J. B.1,Young J. Z.2

Affiliation:

1. Department of Animal & Plant Sciences, Sheffield University, Sheffield S10 2TN, UK ()

2. Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK

Abstract

This paper describes the ontogeny, breakdown and absorption of the radular teeth of cephalopods and, for the first time, considers the function of the ‘bolsters’ or radular support muscles.The radular ribbon, which bears many regularly arranged transverse rows of teeth one behind the other, lies in a radular canal that emerges from the radular sac. Here the radular teeth are formed by a set of elongate cells with microvilli, the odontoblasts. These are organized into two layers, the outer producing the radular membrane and the bases of the teeth, the inner producing the cusps. The odontoblasts also secrete the hyaline shield and the teeth on the lateral buccal palps, when these are present. At the front end of the radular ribbon the teeth become worn in feeding and are replaced from behind by new ones formed continuously in the radular sac, so that the whole ribbon moves forward during ontogeny. Removal of the old teeth is achieved by cells in the radular organs; these cells, which are formed from modified odontoblasts (‘odontoclasts’), dissolve the teeth and membranes and absorb them. There is a subradular organ in all cephalopods. InOctopus vulgaris, which bores into mollusc shells and crustacean carapaces, it is especially well–developed and there is also a supraradular organ.A characteristic feature of the cephalopod radular apparatus is the pair of large radular support muscles or ‘bolsters’. Their function seems never to have been investigated, but experiments reported here show that when they elongate, the radular teeth become erect at the bending plane and splayed, presumably enhancing their ability to rake food particles into the pharynx. The bolsters ofOctopusfunction as muscular hydrostats: because their volume is fixed, contraction of their powerful transverse muscles causes them to elongate. In decapods and in nautiloids each bolster contains a ‘support rod’ of semi–fluid material, as well as massive transverse musculature. This rod may elongate to erect the radular teeth. At the extreme front end of the bolsters inOctopusthere are many nerve fibres that may constitute a receptor organ signalling the movements of the radula against hard material. Such nerves are absent from decapods and from octopods that do not bore holes.The buccal mass ofNautilusis massive, with heavily calcified tips to the beaks and a wide radular ribbon, with 13 rather than nine elements in each row. Nevertheless all the usual coleoid features are present in the radular apparatus and the teeth are formed and broken down in the same way. However,Nautilushas a unique structure, the radular appendage. This comprises a papillate mass extending over the palate in the mid–line and forming paired lateral masses that are in part secretory. The organ is attached to the front of the radula by muscles and connective tissue. Its function is unknown.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3