Structure and function of the Nautilus statocyst

Author:

Neumeister H.1,Budelmann B. U.12

Affiliation:

1. Marine Biomedical Institute, University of Texas Medical BranchGalveston, TX 77555-1163USA

2. Department of Otolaryngology, University of Texas Medical BranchGalveston, TX 77555-1163USA

Abstract

The two equilibrium receptor organs (statocysts) ofNautilusare ovoid sacks, half-filled with numerous small, free-moving statoconia and half with endolymph. The inner surface of each statocyst is lined with 130 000 to 150 000 primary sensory hair cells. The hair cells are of two morphological types. Type A hair cells carry 10 to 15 kinocilia arranged in a single ciliary row; they are present in the ventral half of the statocyst. TypeBhair cells carry 8 to 10 irregularly arranged kinocilia; they are present in the dorsal half of the statocyst. Both type of hair cells are morphologically polarized. To test whether these features allow theNautilusstatocyst to sense angular accelerations, behavioural experiments were performed to measure statocyst-dependent funnel movements during sinusoidal oscillations of restrainedNautilusaround a vertical body axis. Such dynamic rotatory stimulation caused horizontal phase-locked movements of the funnel. The funnel movements were either in the same direction (compensatory funnel response), or in the opposite direction (funnel follow response) to that of the applied rotation. Compensatory funnel movements were also seen during optokinetic stimulation (with a black and white stripe pattern) and during stimulations in which optokinetic and statocyst stimulations were combined.These morphological and behavioural findings show that the statocysts ofNautilus, in addition to their function as gravity receptor organs, are able to detect rotatory movements (angular accelerations) without the specialized receptor systems (crista/cupula systems) that are found in the statocysts of coleoid cephalopods. The findings further indicate that both statocyst and visual inputs control compensatory funnel movements.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3