Base–compositional biases and the bat problem. III. The question of microchiropteran monophyly

Author:

Hutcheon James M.1,Kirsch John A.W.1,Pettigrew John D.2

Affiliation:

1. The University ofWisconsin Zoological Museum, 250 North Mills Street, Madison,WI 53706, USA

2. Vision,Touch, and Hearing Research Centre, University of Queensland, St Lucia, Queensland 4072, Australia

Abstract

Using single–copy DNA hybridization, we carried out a whole genome study of 16 bats (from ten families) and five outgroups (two primates and one each dermopteran, scandentian, and marsupial). Three of the bat species represented as many families of Rhinolophoidea, and these always associated with the two representatives of Pteropodidae. All other microchiropterans, however, formed a monophyletic unit displaying interrelationships largely in accord with current opinion. Thus noctilionoids comprised one clade, while vespertilionids, emballonurids, and molossids comprised three others, successively more closely related in that sequence. The unexpected position of rhinolophoids may be due either to the high AT bias they share with pteropodids, or it may be phylogenetically authentic. Reanalysis of the data with varying combinations of the five outgroups does not indicate a rooting problem, and the inclusion of many bat lineages divided at varying levels similarly discounts long branch attraction as an explanation for the pteropodid–rhinolophoid association. If rhinolophoids are indeed specially related to pteropodids, many synapomorphies of Microchiroptera are called into question, not least the unitary evolution of echolocation (although this feature may simply have been lost in pteropodids). Further, a rhinolophoid–pteropodid relationship — if true — has serious implications for the classification of bats. Finally, among the outgroups, an apparent sister–group relation of Dermoptera and Primates suggests that flying lemurs do not represent the ancestors of some or all bats; yet, insofar as gliding of the type implemented in dermopterans is an appropriate model for the evolution of powered mammalian flying, the position of Cynocephalus in our tree indirectly strengthens the argument that true flight could have evolved more than once among bats.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3