Level detection in ion channel records via idealization by statistical filtering and likelihood optimization

Author:

Pastushenko Vassili Ph.1,Schindler Hansgeorg1

Affiliation:

1. Institute for Biophysics, Johannes Kepler University of LinzAltenbergerstr. 69, A-4040 Linz-AuhofAustria

Abstract

A parameter–free method is presented for the level detection in ion channel records via recovery of step wise current changes. No assumptions about ion channel mechanism are made. The primary detection of the transitions is made by statistical filtering the data using the Student'st–test. The event currents are calculated as the average value of the current between two adjacent transitions. An optimal ideal trace is found by maximization of a likelihood function. The distribution of event currents recovered from the raw data is then analysed, again by using the Student'st–test, for their grouping into separate statistical ensembles, defining current levels. The method is subjected to rigorous test using simulated data, and is compared with several other methods. It produces the levels of channel current, their noise amplitudes and distributions of dwell times, the desired information for constructing the channel mechanism.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference45 articles.

1. Abramowitz M. & Stegun I. A. 1965 Handbook of mathematical functions ~ith formulas graphs and mathematical tables. New York : Dover.

2. Analysing ion channels with hidden Markov models. Pflu gers Arch. GES;Becker J. D.;Ph~siol.,1994

3. Box G. E. P. Jenkins G. M. & Reinsel G. C. 1994 ~ime series anal~sis. Forecasting and control. Englewood Cliffs New Jersey : Prentice-Hall.

4. Forward-backward non-linear filtering technique for extracting small biological signals from noise. ~. neurosci;Chung S. H.;Methods,1991

5. Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3