A mathematical model for the computation of carboxyhaemoglobin in human blood as a function of exposure time

Author:

Abstract

A mathematical model is developed for the carbon monoxide (CO) uptake by the blood by taking into account the molecular diffusion, convection, facilitated diffusion and the non-equilibrium kinetics of CO with haemoglobin. The overall rate for the combination of CO with haemoglobin is derived by including the dissociation of CO from carboxyhaemoglobin (COHb). The resulting coupled system of nonlinear partial differential equation with physiologically relevant initial, entrance and boundary conditions is solved numerically. A fixed point iterative technique is used to deal with nonlinearities. The concentration of COHb in the blood is computed as a function of exposure time and ambient CO concentration. The COHb levels computed from our model are in good agreement with those measured experimentally. Also, results computed from our model give better approximation to the experimental values compared with the results from other models. The time taken by the blood COHb to attain 95 % of its equilibrium value is computed. The COHb concentration in the blood increases with the increase in ventilation rate, association rate coefficient of CO with haemoglobin and total haemoglobin content in the blood, and with the decrease in dissociation rate coefficient of CO with haemoglobin and mean capillary blood p O 2 . It is found that the COHb level in the blood is not affected significantly because of endogenous production of CO in the body under normal condition. However, the effect may be significant in the patients with haemolytic anaemia.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference1 articles.

1. T h e oxygen dissociation haem oglobin. J . biol;Chem.,1925

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3