Replication of tobacco mosaic virus RNA

Author:

Buck Kenneth W.1

Affiliation:

1. Department of Biology, Imperial College of Science,Technology and Medicine, London SW7 2AZ, UK ()

Abstract

The replication of tobacco mosaic virus (TMV) RNA involves synthesis of a negative–strand RNA using the genomic positive–strand RNA as a template, followed by the synthesis of positive–strand RNA on the negative–strand RNA templates. Intermediates of replication isolated from infected cells include completely double–stranded RNA (replicative form) and partly double–stranded and partly single–stranded RNA (replicative intermediate), but it is not known whether these structures are double–stranded or largely single–stranded in vivo . The synthesis of negative strands ceases before that of positive strands, and positive and negative strands may be synthesized by two different polymerases. The genomic–length negative strand also serves as a template for the synthesis of subgenomic mRNAs for the virus movement and coat proteins. Both the virus–encoded 126–kDa protein, which has amino–acid sequence motifs typical of methyltransferases and helicases, and the 183–kDa protein, which has additional motifs characteristic of RNA–dependent RNA polymerases, are required for efficient TMV RNA replication. Purified TMV RNA polymerase also contains a host protein serologically related to the RNA–binding subunit of the yeast translational initiation factor, eIF3. Study of Arabidopsis mutants defective in RNA replication indicates that at least two host proteins are needed for TMV RNA replication. The tomato resistance gene Tm–1 may also encode a mutant form of a host protein component of the TMV replicase. TMV replicase complexes are located on the endoplasmic reticulum in close association with the cytoskeleton in cytoplasmic bodies called viroplasms, which mature to produce ‘X bodies’. Viroplasms are sites of both RNA replication and protein synthesis, and may provide compartments in which the various stages of the virus mutiplication cycle (protein synthesis, RNA replication, virus movement, encapsidation) are localized and coordinated. Membranes may also be important for the configuration of the replicase with respect to initiation of RNA synthesis, and synthesis and release of progeny single–stranded RNA.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference136 articles.

1. Adkins S. Stawacki S. S. Faurote G. Siegel R. W. & Kao C. C. 1998 Mechanistic analysis of RNA synthesis by RNAdependent RNA polymerase from two promoters reveals similarities to DNA-dependent RNA polymerases. RNA 4 455^470.

2. Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities;Ahola T.;J.Virol.,1997

3. Aoki S. & Takebe I. 1975 Replication of tobacco mosaic virus RNA in tobacco mesophyll protoplasts in vitro. Virology 65 343^354.

4. Conservation and Diversity of Eukaryotic Translation Initiation Factor eIF3

5. Interaction of elongation factor 1 with aminoacylated brome mosaic virus and tRNAs;Bastin M.;J. Virol.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3