Affiliation:
1. Department of Environmental Sciences, University of Virginia, Charlottesville,VA 22903, USA
2. School of Geology and Geophysics, University of Oklahoma, Norman, OK 73019, USA
3. Department of Pediatrics, University of Vienna, A 1090 Vienna, Austria
4. Research Laboratory forArchaeology and the History of Art, University of Oxford, Oxford OX1 3Q J, UK
Abstract
Fundamental to the understanding of human history is the ability to make interpretations based on artifacts and other remains which are used to gather information about an ancient population. Sequestered in the organic matrices of these remains can be information, for example, concerning incidence of disease, genetic defects and diet. Stable isotopic compositions, especially those made on isolates of collagen from bones, have been used to help suggest principal dietary components. A significant problem in the use of collagen is its long–term stability, and the possibility of isotopic alteration during early diagenesis, or through contaminating condensation reactions. In this study, we suggest that a commonly overlooked material, human hair, may represent an ideal material to be used in addressing human diets of ancient civilizations.Through the analysis of the amino–acid composition of modern hair, as well as samples that were subjected to radiation (thus simulating ageing of the hair) and hair from humans that is up to 5200 years old, we have observed little in the way of chemical change. The principal amino acids observed in all of these samples are essentially identical in relative abundances and content. Dominating the compositions are serine, glutamic acid, threonine, glycine and leucine, respectively accounting for approximately 15%, 17%, 10%, 8% and 8% of the total hydrolysable amino acids. Even minor components (for example, alanine, valine, isoleucine) show similar constancy between the samples of different ages. This constancy clearly indicates minimal alteration of the amino–acid composition of the hair. Further, it would indicate that hair is well preserved and is amenable to isotopic analysis as a tool for distinguishing sources of nutrition.Based on this observation, we have isotopically characterized modern individuals for whom the diet has been documented. Both stable nitrogen and carbon isotope compositions were assessed, and together provide an indication of trophic status, and principal type (C3or C4) of vegetation consumed. True vegans have nitrogen isotope compositions of about 7‰ whereas humans consuming larger amounts of meat, eggs, or milk are more enriched in the heavy nitrogen isotope. We have also analysed large cross sections of modern humans from North America and Europe to provide an indication of the variability seen in a population (the supermarket diet). There is a wide diversity in both carbon and nitrogen isotope values based at least partially on the levels of seafood, corn–fed beef and grains in the diets. Following analysis of the ancient hair, we have observed similar trends in certain ancient populations. For example, the Coptics of Egypt (1000 BP) and Chinchorro of Chile (5000–800 BP) have diets of similar diversity to those observed in the modern group but were isotopically influenced by local nutritional sources. In other ancient hair (Egyptian Late Middle Kingdom mummies,ca. 4000 BP), we have observed a much more uniform isotopic signature, indicating a more constant diet. We have also recognized a primary vegetarian component in the diet of the Neolithic Ice Man of the Oetztaler Alps (5200 BP). In certain cases, it appears that sulphur isotopes may help to further constrain dietary interpretations, owing to the good preservation and sulphur content of hair. It appears that analysis of the often–overlooked hair in archaeological sites may represent a significant new approach for understanding ancient human communities.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Reference60 articles.
1. E¡ects of diet, climate and physiology on nitrogen isotope abundances in terrestrial foodwebs;Ambrose S. H.;J. Arachaeol. Sci.,1991
2. Ambrose S. H. 1993 Isotopic analysis of palaeodiets: methodological and interpretive considerations. In Investigations of ancient human tissue (ed. M. K. Sandford) pp. 59^130. Langhorne PA: Gordon & Breach Science Publishers.
3. Ambrose S. H. & Norr L. 1993 Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Prehistoric human boneöarchaeology at the molecular level (ed. J. B. Lambert & G. Grupe) pp. 1^37. Berlin: Springer.
4. Arriaza B. T. 1995 Beyond death. Washington DC: Smithsonian Institution Press.
5. Denaturation and release of amino acids in hairs treated with cold-waving lotions, hair-dyes, hair-bleaching solutions and depilatories;Baba N.;J. Hyg. Chem.,1973
Cited by
190 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献