Mechanisms of innate resistance to Toxoplasma gondii infection

Author:

Alexander J.1,Scharton-Kersten T. M.2,Yap G.2,Roberts C. W.1,Liew F. Y.3,Sher A.2

Affiliation:

1. Department of Immunology, University of Strathclyde31 Taylor Street, Glasgow G4 0NRUK

2. Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of HealthBethesda, MD 20892USA

3. Department of Immunology, University of GlasgowGlasgow G11 6NTUK

Abstract

The interaction of protozoan parasites with innate host defences is critical in determining the character of the subsequent infection. The initial steps in the encounter of Toxoplasma gondii with the vertebrate immune system provide a striking example of this important aspect of the host–parasite relationship. In immunocompetent individuals this intracellular protozoan produces an asymptomatic chronic infection as part of its strategy for transmission. Nevertheless, T. gondii is inherently a highly virulent pathogen. The rapid induction by the parasite of a potent cell–mediated immune response that both limits its growth and drives conversion to a dormant cyst stage explains this apparent paradox. Studies with gene–deficient mice have demonstrated the interleukin–12 (IL–12)–dependent production of interferon gamma (IFN–gamma) to be of paramount importance in controlling early parasite growth. However, this seems to be independent of nitric oxide production as mice deficient in inducible nitric oxide synthase (iNOS) and tumour necrosis factor receptor were able to control early growth of T. gondii , although they later succumbed to infection. Nitric oxide does, however, seem to be important in controlling persistent infection; treating chronic infection with iNOS metabolic inhibitors results in disease reactivation. Preliminary evidence implicates neutrophils in effector pathways against this parasite distinct from that described for macrophages. Once initiated, IL–12–dependent IFN–gamma production in synergy with other proinflammatory cytokines can positively feed back on itself to induce ‘cytokine shock’. Regulatory cytokines, particularly IL–10, are essential to down–regulate inflammation and limit host pathology.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3