Abstract
Marr’s theory of the cerebellar cortex as an associative learning device is one of the best examples of a theory that directly relates the function of a neural system to its neural structure. However, although he assigned a precise function to each of the identified cell types of the cerebellar cortex, many of the crucial aspects of the implementation of his theory remained unspecified. We attempted to resolve these difficulties by constructing a computer simulation which contained a direct representation of the 13 000 mossy fibres and the 200 000 granule cells associated with a single Purkinje cell of the cerebellar cortex, together with the supporting Golgi, basket and stellate cells. In this paper we present a detailed explanation of Marr’s theory based upon an analogy between Marr’s cerebellar model and an abstract model called the associative net. Although some of Marr’s assumptions contravene neuroanatom ical findings, we found that in general terms his conclusion that each Purkinje cell can learn to respond to a large number of different patterns of activity in the mossy fibres is substantially correct. However, we found that this system has a lower capacity and acts more stochastically than he envisaged. The biologically realistic simulated structure that we designed can be used to assess the computational capabilities of other network theories of the cerebellum.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Reference31 articles.
1. A theory of cerebellar function
2. Albus J.S. 1981 Brains behaviours and robotics. BYTE Publications. Lawrence Erlbaum Associates.
3. Baron R.J. 1987 The cerebral computer.
4. Functional Interpretation of Cerebellar Histology
5. Carlson N.R. 1977 Physiology of behaviour. Boston: Allyn and Bacon.
Cited by
148 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献