The neurotrophic hypothesis: where does it stand?

Author:

Abstract

In the developing peripheral nervous system many neurons die shortly after their axons reach their target fields. This loss is thought to match the number of neurons to the size and requirements of their target fields because altering target field size before innervation affects the number of neurons that survive. The neurotrophic hypothesis provides an explanation for how target fields influence the size of the neuronal populations that innervate them. This hypothesis arose from work on nerve growth factor (NGF), the founder member of the neurotrophin family of secreted proteins. Its principal tenet is that the survival of developing neurons depends on the supply of a neurotrophic factor that is synthesized in limiting amounts in their target fields. The neurotrophic hypothesis has, however, been broadened by the demonstration that multiple neurotrophic factors regulate the survival of certain populations of neurons. For example, some neurons depend on several different neurotrophic factors which may act concurrently or sequentially during target field innervation. In addition, there are aspects of neurotrophin action that do not conform with the classic neurotrophic hypothesis. For example, the dependence of some populations of sensory neurons on particular neurotrophins before significant neuronal death takes place raises the possibility that the supply of these neurotrophins is not limiting for survival at this stage of development. There is also evidence that at stages before and after sensory neurons depend on target-derived neurotrophins for survival, neurotrophins act on at least some sensory neurons by an autocrine route. Yet despite the growing wealth of information on the multiple roles and modes of action of neurotrophic factors, the neurotrophic hypothesis has remained the best explanation for how neuronal target fields in the developing peripheral nervous system regulate their innervation density.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3