Affiliation:
1. Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University Hadassah Medical School, PO Box 12272, Jerusalem 91120, Israel
Abstract
The presynaptic nerve terminal is of key importance in the communication in the nervous system. Its primary role is to release transmitter quanta on the arrival of an appropriate stimulus. The structural basis of these transmitter quanta are the synaptic vesicles that fuse with the surface membrane of the nerve terminal, to release their content of neurotransmitter molecules and other vesicular components. We subdivide the control of quantal release into two major classes: the processes that take place before the fusion of the synaptic vesicle with the surface membrane (the pre–fusion control) and the processes that occur after the fusion of the vesicle (the post–fusion control). The pre–fusion control is the main determinant of transmitter release. It is achieved by a wide variety of cellular components, among them the ion channels. There are reports of several hundred different ion channel molecules at the surface membrane of the nerve terminal, that for convenience can be grouped into eight major categories. They are the voltage–dependent calcium channels, the potassium channels, the calcium–gated potassium channels, the sodium channels, the chloride channels, the non–selective channels, the ligand gated channels and the stretch–activated channels. There are several categories of intracellular channels in the mitochondria, endoplasmic reticulum and the synaptic vesicles. We speculate that the vesicle channels may be of an importance in the post–fusion control of transmitter release.
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献