A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges

Author:

Abstract

In this chapter we consider the mechanisms involved in cognitive control - from both a computational and a neurobiological perspective — and how these might be impaired in schizophrenia. By ‘control’, we mean the ability of the cognitive system to flexibly adapt its behaviour to the demands of particular tasks, favouring the processing of task-relevant information over other sources of competing information, and mediating task-relevant behaviour over habitual, or otherwise prepotent responses. There is a large body of evidence to suggest that the prefrontal cortex (PFC) plays a critical role in cognitive control. In previous work, we have used a computational framework to understand and develop explicit models of this function of PFC, and its impairment in schizophrenia. This work has lead to the hypothesis that PFC houses a mechanism for representing and maintaining context information. We have demonstrated that this mechanism can account for the behavioural inhibition and active memory functions commonly ascribed to PFC, and for human performance in simple attention, language and memory tasks that draw upon these functions for cognitive control. Furthermore, we have used our models to simulate detailed patterns of cognitive deficit observed in schizophrenia, an illness associated with marked disturbances in cognitive control, and well established deficits of PFC. Here, we review results of recent empirical studies that test predictions made by our models regarding schizophrenic performance in tasks designed specifically to probe the processing of context. These results showed selective schizophrenic deficits in tasks conditions that placed the greatest demands on memory and inhibition, both of which we have argued rely on the processing of context. Furthermore, we observed predicted patterns of deterioration in first episode vs multi-episode patients. We also discuss recent developments in our computational work, that have led to refinements of the models that allow us to simulate more detailed aspects of task performance, such as reaction time data and manipulations of task parameters such as interstimulus delay. These refined models make several provocative new predictions, including conditions in which schizophrenics and control subjects are expected to show similar reaction time performance, and we provide preliminary data in support of these predictions. These successes notwithstanding, our theory of PFC function and its impairment in schizophrenia is still in an early stage of development. We conclude by presenting some of the challenges to the theory in its current form, and new directions that we have begun to take to meet these challenges. In particular, we focus on refinements concerning the mechanisms underlying active maintenance of representations within PFC, and the characteristics of these representations that allow them to support the flexibility of cognitive control exhibited by normal human behaviour. Taken in toto , we believe that this work illustrates the value of a computational approach for understanding the mechanisms responsible for cognitive control, at both the neural and psychological levels, and the specific manner in which they break down in schizophrenia.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference28 articles.

1. “Reverse” Stroop Effect in the Performance of Schizophrenics

2. Bianchi L. 1922 The mechanism of the brain and thefunction of thefrontal lobes. Edinburgh: Livingstone.

3. Braver T. S. Cohen J. D. & Servan-Schreiber D. 1995a A computational model of prefrontal cortex function. In Advances in neural information processing systems (ed. D. S. Touretzky G. Tesauro & T. K. Leen) vol. 7 pp. 141-148. Cambridge MA: M IT Press.

4. Neural network simulations of schizophrenic performance in a variant of the CPT-AX: A predicted double dissociation

5. Abnormal processing of irrelevant information in schizophrenia: the role of illness subtype;Carter C. S.;Psychiatry Res.,1993

Cited by 343 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3