Population dynamics of botanical epidemics involving primary and secondary infection

Author:

Gilligan Christopher A.1,Kleczkowski Adam1

Affiliation:

1. Department of Plant Sciences, University of CambridgeDowning Street, Cambridge CB2 3EAUK

Abstract

In this paper we study the dynamical properties of models for botanical epidemics, especially for soil–borne fungal infection. The models develop several new concepts, involving dual sources of infection, host and inoculum dynamics. Epidemics are modelled with respect to the infection status of whole plants and plant organs (the G model) or to lesion density and size (the SW model). The infection can originate in two sources, either from the initial inoculum (primary infection) or by a direct transmission between plant tissue (secondary infection). The first term corresponds to the transmission through the free–living stages of macroparasites or an external source of infection in certain medical models, whereas the second term is equivalent to direct transmission between the hosts in microparasitic infections. The models allow for dynamics of host growth and inoculum decay. We show that the two models for root and lesion dynamics can be derived as special cases of a single generic model. Analytical and numerical methods are used to analyse the behaviour of the models for static, unlimited (exponential) and asymptotically limited host growth with and without secondary infection, and with and without decay of initial inoculum. The models are shown to exhibit a range of epidemic behaviour within single seasons that extends from simple monotonic increase with saturation of the host population, through temporary plateaux as the system switches from primary to secondary infection, to effective elimination of the pathogen by the host outgrowing the fungal infection. For certain conditions, the equilibrium values are shown to depend on initial conditions. These results have important consequences for the control of plant disease. They can be applied beyond soil–borne plant pathogens to mycorrhizal fungi and aerial pathogens while the principles of primary and secondary infection with host and inoculum dynamics may be used to link classical models for both microparasitic and macroparasitic infections.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference31 articles.

1. Population biology of infectious diseases: Part I

2. Anderson R. M. & May R. M. 1991 Infectious diseases of humans: dynamics and control. Oxford University Press.

3. Anon. 1995 Facsimile v4.0 User Guide. Didcot: AEA Technology.

4. A model for primary and secondary infection in botanical epidemics;Brassett P. R.;Z. Pflanzenkrankheiten und Pflanzenschutz,1988

5. THE DEVELOPMENT OF ENDOMYCORRHIZAL ROOT SYSTEMS. III. THE MATHEMATICAL REPRESENTATION OF THE SPREAD OF VESICULAR-ARBUSCULAR MYCORRHIZAL INFECTION IN ROOT SYSTEMS

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3