The wing beat of Drosophila Melanogaster . III. Control

Author:

Abstract

Two major problems have to be solved by a flying animal or machine, (i) On the time average, flight force has to be produced which is sufficient to keep the body airborne and to propel it through the air. (ii) To stabilize a given position or trajectory, the vector of the generated flight force has to be controlled in its magnitude, orientation and position relative to the body. In the present study, the response of wing-beat kinematics to wind and visual stimuli was investigated in tethered flying Drosophila melanogaster . When the fly is subjected to an air stream in a wind tunnel, or to striped patterns moving in its frontal field of view, the overall shape of the wing path is altered, including variations of the wing-beat amplitude and the angles of attack. The aerodynamic forces were calculated from the kinematic data according to the quasisteady aerodynamic theory, to investigate whether this approach is sufficient to describe the control mechanisms of the fly. The stimulus-induced changes of kinematic and aerodynamic variables were compared with control reactions expected in free flight or measured during tethered flight under similar stimulus conditions. In general, the calculated flight forces are too small to account for the measured lift, thrust and torque responses to the particular stimuli, or would even increase the input stimulus instead of being compensatory. This result supports the notion that unsteady aerodynamic mechanisms are likely to play the major role in flapping flight. Following this line of thought, some kinematic responses can be qualitatively understood in terms of unsteady aerofoil action.

Publisher

The Royal Society

Subject

Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management

Reference40 articles.

1. Wind tunnel studies of turns by flying dragonflies;Alexander D. D.;Biol.,1986

2. The wing movements of flying locusts during steering behaviour. comp;Baker P. S.;Physiol.,1979

3. Aerodynamic capabilities of flies, as revealed by a new technique. J. exp;Blondeau J.;Biol.,1981

4. Three-dimensional optomotor torque system of Drosophila J. comp;Blondeau J.;Physiol.,1982

5. Visual control of flight behaviour in the hoverfly Syritta pipiens. J. comp;Collett T. S.;Physiol.,1975

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3