Abstract
Arthropods, as poikilotherms, adapt to cold environments in a variety of ways that include extension of locomotory activity to low temperatures, enhancement of metabolic rate and maintenance of a positive energy balance whenever possible. The ecological implications for many such animals are extension of the life cycle and a requirement for an individual to overwinter several times. Prolonged sub-zero temperatures increase the risk of tissue freezing, and two main strategies have been evolved, first avoidance of freezing by supercooling, and secondly, tolerance of extracellular ice. In the first strategy, freezing is invariably lethal and extensive supercooling (to — 30 °C and below) occurs through elimination or masking of potential ice nucleators in the body and accumulation of cryoprotective substances such as polyhydric alcohols and sugars. Such species are termed freezing intolerant. The second strategy, freezing tolerance, is uncommon in arthropods and other invertebrates, and usually occurs in a single life stage of a species. Freezing of liquid in the extracellular compartment is promoted by proteinaceous ice nucleators. Freezing is therefore protective, and the lethal temperature is well below the supercooling point in freezing tolerant individuals, whereas in most freezing intolerant species it is close to or at the supercooling point. Proteins also act as antifreezes in insects of both strategies, producing a thermal hysteresis by lowering the freezing point of haemolymph in a non-colligative fashion while not affecting the melting point temperature. Recent studies and developments in arthropod cold tolerance are discussed against this background, and a broader approach than hitherto is advocated, which integrates ecological information with physiological data.
Subject
Industrial and Manufacturing Engineering,General Agricultural and Biological Sciences,General Business, Management and Accounting,Materials Science (miscellaneous),Business and International Management
Reference59 articles.
1. Insect cold hardiness: Freezing and supercooling—An ecophysiological perspective
2. Environmental triggers to cold hardening
3. The physiology and biochemistry of low-temperature tolerance in insects and other terrestrial arthropods. Cryo;Baust J. G.;Lett.,1982
4. Review—Insect cold hardiness: Facts and fancy
5. Oxygen consumption of the terrestrial mite Alaskozetes antarcticus (Acari: Cryptostigmata). J. exp;Block W.;Biol.,1977
Cited by
210 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献