Phylogenetic pattern and the quantification of organismal biodiversity

Author:

Abstract

Biodiversity can be explored at a number of different levels and in principle may be separately quantified at each. Phylogenetic pattern has the potential to quantify and estimate biodiversity at the finest scale, that is, variation among species in features or attributes. This scale is an important one for conservation, as it should form the basis for prioritizing conservation efforts at the species level. Further, recent published objections to differentially weighting species are answered by defining option value at this feature-level. Unfortunately, there has been no consensus on exactly how phylogeny can be used to value species, possibly because proper consideration of the link between pattern and underlying features generally has been unresolved. ‘Phylogenetic diversity’ (PD) represents just one of several approaches that do consider diversity at the feature-level explicitly. These alternative approaches are discussed in the context of a general framework for using pattern to quantify diversity at a level below that of the original objects. The pattern framework highlights that estimation of biodiversity at a lower level using pattern will require decisions about the nature of the units of diversity, the kind of pattern to be used, the model relating unit items to pattern, and finally how this implies a pattern-based measure reflecting biodiversity. An alternative published model for relating features to a particular form of phylogenetic pattern is considered, and shown to make unwarranted assumptions. A possible alternative definition of the underlying units of diversity is examined, which may represent a different form of option value, also quantifiable using phylogeny. A possible alternative pattern to a phylogenetic tree for the prediction of feature diversity is also discussed. The appeal of these alternative approaches depends on the goals of conservation; in addition, justification for prioritizing or weighting requires that any practical approach avoid arbitrary, unwarranted, assumptions.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference38 articles.

1. Aylward B. 1992 Valuing the environment. In Global biodiversity: status of the Earth's living resources (ed. B. Groombridge) pp. 407-425. London: Chapman and Hall.

2. Aylward B. & Gammage S. 1992 Preserving future options. In Global biodiversity: status of the Earth's living resources (ed. B. Groombridge) pp. 425-426. London: Chapman and Hall.

3. Ehrenfeld D. 1988 Why put a value on biodiversity? In Biodiversity (ed. E. O. Wilson) pp. 212-216. Washington: National Academy Press.

4. Eldredge N. (ed.) 1992 Systematics ecology and the biodiversity crisis. New York: Columbia University Press.

5. HOMOPLASY AS PATTERN: MULTIVARIATE ANALYSIS OF MORPHOLOGICAL CONVERGENCE IN ANSERIFORMES

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3