Spatial patterns in the geographic range sizes of bird species in the New World

Author:

Abstract

The attempt to identify and explain pattern in the extent of species’ geographical distributions at regional scales has been central to macroecology. However, with the exception of abundance, consistent relations between other variables and species geographic extent have not been forthcoming. One reason may be that studies often encompass the entire geographic ranges of only a fraction of the species in the taxon under consideration, setting biologically artificial boundaries to the area of study, and only revealing part of the pattern in question. Here, we examine patterns in the geographic range sizes of birds in the New World. By testing for patterns in the entire avifauna of a geographically isolated region (95% of species are endemic), we avoid many of the problems of previous studies. Most New World bird species have small geographic ranges, although the frequency distribution of logarithmically transformed ranges is left-skewed. The geographic range size-body size relation is approximately triangular. Small-bodied species may have either large or small ranges, whereas large-bodied species have only large ranges. Species threatened with extinction more often fall nearer to (or below) the lower edge defined by the majority of species in this triangle than do non-threatened species, suggesting that this represents the minimum area needed to sustain viable populations of species of different sizes. The maximum range size attained by species is relatively constant across body sizes, but falls short of the maximum possible given the land area of the New World, and so cannot be limited by this constraint. What does limit maximum range size is thus unclear. There is a latitudinal gradient in the size of species geographic ranges. Species which have the latitudinal mid-point of their geographic ranges at high latitudes either side of the equator tend to have large range sizes, whereas those with mid-points at lower latitudes tend to have small range sizes (as expected from Rapoport’s rule). However, this pattern is not symmetrical about the equator, but rather, at about 17° N. It appears to be a consequence of the biogeography of the New World, and implies that mechanisms suggested to explain Rapoport’s rule based on climatic variability are incorrect. Migrant birds have larger geographic ranges, on average, than do residents. They are also larger-bodied, and tend to inhabit more northerly latitudes than residents, but their larger ranges are not the simple consequence of these other patterns. The patterns we demonstrate, in particular those relating to maximum range size across body sizes and to latitudinal variation in range size, have significant consequences for the understanding of what determines species geographic range sizes.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Reference92 articles.

1. Andrewartha H. G. 1961 Introduction to the study of animal populations. University of Chicago Press.

2. Arita H. T. Robinson J. G. & Redford K. H. 1990 Rarity

3. figure 5 aby setting a lower minimum range size

4. between 10 and 20° N. However the relation in figure

5. aremains if range sizes are not scaled by the amount in Neotropical forest mammals and its ecological correlates. Conserv. Biol. 4 181-192.

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3