Kinetic boundary friction

Author:

Abstract

It is shown that the exhibition of smooth sliding and relaxation oscillations, or ‘stick-slips’, under conditions of boundary lubrication, when frictional forces are measured by the deflexion of an elastic system, may be explained as due to the dependence of kinetic friction on velocity. In the cases giving smooth sliding, kinetic friction decreases as velocity decreases, at very low speeds; for the cases giving relaxation oscillations kinetic friction increases as velocity decreases. That is, sliding under boundary conditions is not inherently discontinuous, any discontinuous motion being due to the dynamics of the measuring instrument, and is the result of kinetic friction increasing as velocity decreases. Curves of boundary friction against velocity, using various slicing surfaces, have been determined for a number of lubricants, which show both the above-mentioned types of friction-velocity relationship; and the dependence is shown of kinetic boundary friction on molecular weight for a series of esters of the fatty acids, on percentage of fatty oil in a compounded lubricant (actually oleic acid in mineral oil) and on temperature for a pure substance and a mineral oil. The measurements with the series of esters show some agreement with results given by Fogg (1940). The mixtures of oleic acid with mineral oil give decreasing kinetic friction with increasing percentage of oleic acid right up to 100% oleic acid. The effect of temperature on the dependence of friction in velocity shows that the temperature at which relaxation oscillations first occur depends on the speed of sliding, from which it appears that measurements of the temperature at which relaxation oscillations start at constant sliding speed (Frewing 1942) are not a measure of the temperature at which there is a discontinuity in the properties of the boundary layer.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference7 articles.

1. Adam 1938 Thephysics

2. Blok 1937 Inst. Mech.

3. Bowden & Leben 1939 Proc. Roy.

4. The friction of lubricated metals

5. Proc. Roy;Bragg;Inst.,1925

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3