The determination of static and dynamic yield stresses using a steel ball

Author:

Abstract

The static and dynamical yield stress of the material of a thick steel plate may be estimated by pressing and by dropping a hard steel ball on a plane surface of the plate which has been ground and then polished. Under these conditions, the first appearance of an indentation on the polished surface can be detected with good accuracy, either by an optical interference method, or by an optical reflexion method. The statical experiment consists in finding the least force which must be applied to the steel ball to produce a permanent indentation, whilst the dynamical experiment consists in finding the least normal velocity of impact which gives similarly a permanent indentation. Using either the Guest-Mohr principal-stress difference or the von Mises shear strain energy hypotheses as criteria of failure, combined with an analysis of the stresses in the plate, it is shown how the appropriate yield stress can be calculated from the experimental data. Tests were made on a specimen of mild steel, two specimens of homogeneous armour plate and a very hard nickel-chrome steel of the type used for ball and roller bearings. The ratio of the dynamic value of the yield stress to the static value was found to increase as the hardness number decreases; the ratio was practically unity for the nickel-chrome steel, about 1⋅1 for the armour plate and about 2 for the mild steel. The values of the static yield stress found by the ball method and by an ordinary tensile or compression test are different; this is probably due partly to the inaccuracy of the criteria of plastic flow, partly to the difference in work-hardening in the two experiments, and partly to changes in the structure of the surface due to polishing. This discrepancy is without effect on the ratio of the dynamic to static yield stress as determined by the ball method, since the stress distributions in the static and dynamic ball experiments are identical.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference16 articles.

1. Coker E. G. & Filon L. N. G. 1931 Photoelasticity p. 357 para. 4-23. Camb. Univ. Press.

2. Fry A. 1921 K rupp.

3. Fuchs S. 1913 Phys.

4. M h.(July issue) (cf. Nadai, p. 91);Hertz H.;Z .,1881

5. J .reine angew. M ath. 92 156. Reprinted in an English translation in

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3