The fine structure of the lines of the H 2 spectrum which go down to the 2 p 3 π states

Author:

Abstract

The echelon data tabulated and described in the preceding paper referred to here as Paper I are used to investigate the fine structure of the H 2 band lines discovered by Richardson & Williams in 1931. Practically all the lines with resolved fine structure have 2 p 3 π as their lower states and the number of such resolved lines is now very greatly increased. The new information is applied in the first instance to the critical examination and improvement of the existing tables of the (composite) 2 p 3 π level differences. These are a basic tool in the elucidation of this spectrum. One result of this part of the investigation is that the pairs of lines from which each composite level difference is derived divide themselves into two groups which have slightly different values. The fine structure shows itself visually as a resolution of the lines hitherto regarded as single into two components which we denote by a and b, a having the higher frequency and intensity. The differences for a or b are considered separately and shown to be different from each other and from the differences of the composite lines. A number of regularities among these new' differences are pointed out. The largest doublet separation Δv observed is about 0.22 cm. -1 and the smallest 0.06 cm. -1 . The lines (which go down from 3.8 3 Σ and 3d 3 Σ, Π, Δ, A to 2 p 3 Π cd ) are divided into a ‘regular’ and an ‘irregular 5 group. Lines of the regular group have a larger Δv and the intensity ratio of a to b is nearly constant and close to 2.4, whereas for the irregular group this ratio falls from about 5 to about 1 as K" increases from 1 to 4. The regular group consists of all the lines which go down to 2 p 3 Π cd , and the irregular group of all which go down to 2 p 3 Π d . The greater part (about 90 %) of the doublet separations arises from fine structure splitting of the lower 2 p 3 Π levels. When effects arising from the upper levels are eliminated it is found that the splitting, both of 2 p 3 Π H c and 2p 3 Il d , diminishes as K" increases and at an increasing rate at higher K″. In general these fine structures are closely parallel with those of He 2 discovered by Monk & Mulliken in 1929. The H 2 data cover a wider range of states and fill in the gaps left by the ‘missing lines’ in the He 2 spectrum. There are, however, some differences outstanding which seem to call for further investigation.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference16 articles.

1. Gale H. G. Monk G. S. & Lee K. O. 1 9 2 8 Astrophys.

2. Kratners H. A. 1 9 2 9 67 89.

3. Z.Phys. 53 422.

4. Kapuscinsky W. & Eymers J. G. 1 9 2 9 Proc. Roy. Soc. A 1 2 2 0 8 .

5. Monk G. S. & Mulliken R. S. 1 9 2 9 Nature 124 91.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3