The seasonal variations of cosmic-ray intensity and temperature of the atmosphere

Author:

Abstract

A careful examination of the upper atmospheric data for Europe and the United States indicates that the mean temperature of the upper atmosphere in spring differs from that in summer more than from that in winter. The magnitude of the second difference as defined by (1) depends on the height of the atmosphere which is considered and is a maximum at a height of about 6 km. and changes sign at heights above 12 km. (figure 1). This lag in the warming of the atmosphere in spring is found to be paralleled by a lag in the diminution of intensity of the cosmic-rays. A similar phenomenon is found in autumn. The cooling of the atmosphere as a whole is found to be less between summer and autumn than between autumn and winter, though the effect is markedly less definite than in spring. The cosmic-ray variations are found to be correlated more closely with the mean temperature of the atmosphere up to 16 km. than with the temperature near the ground. This provides additional support for the theory of Blackett that the temperature variation of penetrating cosmic-rays is related to the instability of the mesotron. The temperature coefficient of the cosmic-rays as deduced from the seasonal data is found to be 0.18 %/° C, and this is in rough agreement with the prediction of the theory.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Galactic cosmic rays and solar particles in Earth's atmosphere;The Hidden Link between Earth's Magnetic Field and Climate;2020

2. Search for possible solar influences in Ra-226 decays;Results in Physics;2017

3. The Temperature Effect on Cosmic-Ray Intensity and the Height of Meson Formation;Proceedings of the Physical Society;1948-07-01

4. The geophysical aspect of cosmic rays;Proceedings of the Physical Society;1945-11

5. The Mesotron Component of Cosmic Rays;Physical Review;1942-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3