On the dimension of normal spaces

Author:

Abstract

The main purpose of this paper is to generalize for the case of normal spaces the fundamental theorem of the homological dimension theory and the existence theorem on Cantor manifolds in n -dimensional spaces. This generalization is based on (1) The generalizationf of the same theorems, and many others, for bicompacta (i.e. bicompact Hausdorff spaces)—§§ 4, 5. (2) The study of certain ‘maximal’ subspectra of the spectrum of a bicompactum—§ 3. (3) A new approach to the maximal, or Čech, extension of a normal space—§ 6. (4) A suitable definition of the generalized notion of Cantor manifold, which is combinatorial in character and, when applied to compacta, corresponds to the classical definition given by Urysohn—§ 7. In §§ 1,2 I recall well-known definitions regarding homological invariants of bicompacta, and their coverings and spectra (see, for example, my papers (1941 a ,1943) and the fundamental work of Lefschetz (1942, chapter vI)). Notations . U denotes set-theoretical sums, ∩ intersections of sets; ∧ stands for the void set.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference13 articles.

1. Alexandroff P. 1932 Math.

2. Math;Alexandroff P.;Sbornik.,1939

3. C.R;Alexandroff P.;Acad. Sci. U. R. S.,1940

4. General combinatorial topology

5. 6 Mitt;Alexandroff P.;Akad. TPiss. Oeorgisclien S. S. R.,1941

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong computable type;Computability;2023-11-13

2. Inductive(m,n)-dimensions;Topology and its Applications;2014-06

3. BIBLIOGRAPHY;Modern Dimension Theory;2014

4. Cell-Like Maps and Related Topics;Geometric Aspects of General Topology;2013

5. Dimensions of Spaces;Geometric Aspects of General Topology;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3