One-dimensional dislocations - III. Influence of the second harmonic term in the potential representation, on the properties of the model

Author:

Abstract

In the previous one-dimensional dislocation model, a single sinusoidal term was taken to represent the potential energy of the deposit as a function of its position on the substrate. In this model a more general representation of the potential, containing a second harmonic term as well, is used, and it is shown that the solution in this case is also expressible in terms of elliptic integrals. The displacements corresponding to a sequence of dislocations (or a single one) are calculated. The work done in generating a single dislocation by a force on a free end is derived and the stability conditions for such a chain determined. It turns out that the properties of single dislocations, especially as concerns their application to misfitting monolayers and oriented overgrowth, remain almost uninfluenced, unless the amplitude of the second harmonic term is so large as to produce a new minimum and provided the overall amplitude of the potential energy is taken to be constant. When the amplitude of the second harmonic term is large, so that the potential curve has a second minimum, a complete dislocation splits up into two halves which are the one-dimensional analogues of Shockley’s ‘half-dislocations’ in close-packed lattices. The equilibrium separation of the two halves, as well as the stability conditions for the existence of a single half, are determined.

Publisher

The Royal Society

Subject

Pharmacology (medical)

Reference3 articles.

1. Proc. Roy;Frank F. C.;Soc. A,1949

2. Greenhill A. C. 189a Applications of elliptic functions p. 54. London: Mn^millnn & c Q.

3. Heidenreich R. D. & Shockley W. 1948 Report of Bristol conference on strength of solids p. 57. London: The Physical Society.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3