Influence of silicon on growth mechanism of micro-arc oxidation coating on cast Al–Si alloy

Author:

Yu Huijun12,Dong Qing3,Chen Yang3,Chen Chuanzhong3ORCID

Affiliation:

1. Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, School of Mechanical Engineering, Shandong University, Ji'nan 250061, Shandong, People's Republic of China

2. National Demonstration Center for Experimental Mechanical Engineering Education (Shandong University), School of Mechanical Engineering, Shandong University, Ji'nan 250061, Shandong, People's Republic of China

3. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Ji'nan 250061, Shandong, People's Republic of China

Abstract

Micro-arc oxidation (MAO) is a plasma-assisted electrochemistry method to prepare protective ceramic coatings on aluminium alloys. Alloy elements of the Al-alloy substrate, such as Si, Cu, Mg and Li, have effects on the microstructure and composition of the MAO coatings. Usually, silicon distributes in the cast Al–Si alloy substrate as small laths and they cover approximately 10% of the substrate surface. Therefore, their effects on the growth process and microstructure of the MAO coatings are worthy of notice. In the present study, oxide coatings with a thickness of 15–18 µm were prepared on the ZL109 Al–Si alloy by MAO. The phase content, surface morphology and element distribution of the coatings were investigated by X-ray diffraction, grazing incidence X-ray diffraction, scanning electron microscope, and electron probe micro-analysis respectively. The average hardness of the coatings was 622.3 ± 10.2 HV 0.05 . The adhesive strength of the coatings is 40.55 ± 2.55 N, and the adhesion of the coatings could be rated as 5B by tape test according to ASTM D3359-17 standard test methods, which indicated a high adhesive strength between the MAO coating and substrate. The effects of silicon laths on surface morphology and composition of the coatings were discussed, and a model was put forward to describe the growth process of the MAO coatings on cast Al–Si alloys. The authors believe that the high silicon content of the substrate has no adverse influence on the structure and properties of the MAO coating on the ZL109 alloy.

Funder

Science and Technology Supporting System Item of Resource-conserving Society of Shandong Province

Development Project of Science and Technology of Shandong Province

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3