Generalized Erdős numbers for network analysis

Author:

Morrison Greg1ORCID,Dudte Levi H.2,Mahadevan L.2345

Affiliation:

1. Department of Physics, University of Houston, Houston, TX 77204, USA

2. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

3. Department of Physics, Harvard University, Cambridge, MA 02138, USA

4. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

5. Kavli Institute for Nano-bio Science and Technology, Harvard University, Cambridge, MA 02138, USA

Abstract

The identification of relationships in complex networks is critical in a variety of scientific contexts. This includes the identification of globally central nodes and analysing the importance of pairwise relationships between nodes. In this paper, we consider the concept of topological proximity (or ‘closeness’) between nodes in a weighted network using the generalized Erdős numbers (GENs). This measure satisfies a number of desirable properties for networks with nodes that share a finite resource. These include: (i) real-valuedness, (ii) non-locality and (iii) asymmetry. We show that they can be used to define a personalized measure of the importance of nodes in a network with a natural interpretation that leads to new methods to measure centrality. We show that the square of the leading eigenvector of an importance matrix defined using the GENs is strongly correlated with well-known measures such as PageRank, and define a personalized measure of centrality that is also well correlated with other existing measures. The utility of this measure of topological proximity is demonstrated by showing the asymmetries in both the dynamics of random walks and the mean infection time in epidemic spreading are better predicted by the topological definition of closeness provided by the GENs than they are by other measures.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3