Functionalization of 3-chloroformylcoumarin to coumarin Schiff bases using reusable catalyst: an approach to molecular docking and biological studies

Author:

Kumbar Suresh S.1ORCID,Hosamani Kallappa M.1,Gouripur Gangadhar C.2,Joshi Shrinivas D.3ORCID

Affiliation:

1. Department of Studies in Chemistry, Karnatak University, Dharwad, 580003, Karnataka, India

2. P. G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India

3. Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T.'s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad 580002, Karnataka, India

Abstract

Recently, heterogeneous catalysts have been explored eximiously in the synthesis of heterocyclic compounds. Therefore, here we used solid-supported heterogeneous silica sulfuric acid as a catalyst for the synthesis of Schiff's base of 3-chloroformylcoumarin in view of simplified procedure, reusability and acceptable efficiency, which are required in organic synthesis. An efficient and facile methodology is preferred for synthesis of a class of chromeno-3-substituted derivatives ( 1a–1l ) with good yields. The molecular docking results showed excellent binding interactions with the Mycobacterium tuberculosis InhA-D148G mutant (PDB: 4DQU). The same biomolecules were screened for their in vitro anti-tubercular activity against the M.tb H37Rv strain and antimicrobial studies. Physico-chemistry, toxicity prediction with IC50 value and bioactivity score were also calculated for title compounds. Most active compounds were further tested for cytotoxicity studies and exhibited low-level cytotoxicity against Vero cells. The suggested conjugates are promising lead compounds for the subsequent investigation in search of new anti-tubercular agents. All the conjugates were obtained within the range and followed the Lipinski rule of 5, indicating more ‘drug-like’ nature.

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3