Advances in synthetic gauge fields for light through dynamic modulation

Author:

Hey DanielORCID,Li Enbang

Abstract

Photons are weak particles that do not directly couple to magnetic fields. However, it is possible to generate a photonic gauge field by breaking reciprocity such that the phase of light depends on its direction of propagation. This non-reciprocal phase indicates the presence of an effective magnetic field for the light itself. By suitable tailoring of this phase, it is possible to demonstrate quantum effects typically associated with electrons, and, as has been recently shown, non-trivial topological properties of light. This paper reviews dynamic modulation as a process for breaking the time-reversal symmetry of light and generating a synthetic gauge field, and discusses its role in topological photonics, as well as recent developments in exploring topological photonics in higher dimensions.

Publisher

The Royal Society

Subject

Multidisciplinary

Reference106 articles.

1. Electrically Driven and Thermally Tunable Integrated Optical Isolators for Silicon Photonics

2. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

3. Silicon photonics broadband modulation-based isolator

4. Doerr CR Chen L Vermeulen D. 2013 Tandem-phase-modulator-based optical isolator in silicon. In 39th European Conf. and Exhibition on Optical Communication London UK 22–26 September 2013 pp. 1230–1232. (doi:10.1049/cp.2013.1683)

5. On-chip non-reciprocal optical devices based on quantum inspired photonic lattices

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3