Magnetic field inhomogeneities due to CO 2 incubator shelves: a source of experimental confounding and variability?

Author:

Makinistian L.12ORCID,Belyaev I.13

Affiliation:

1. Department of Radiobiology, Cancer Research Institute, Biomedical Center, Slovak Academy of Sciences, Bratislava, Slovakia

2. Department of Physics and Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, Consejo Nacional de Investigaciones Científicas y Técnicas, Ejército de los Andes 950, 5700 San Luis, Argentina

3. Laboratory of Radiobiology, General Physics Institute, Russian Academy of Sciences, Moscow, Russia

Abstract

A thorough assessment of the static magnetic field (SMF) inside a CO 2 incubator allowed us to identify non-negligible inhomogeneities close to the floor, ceiling, walls and the door. Given that incubator's shelves are made of a non-magnetic stainless steel alloy, we did not expect any important effect of them on the SMF. Surprisingly, we did find relatively strong distortion of the SMF due to shelves. Indeed, our high-resolution maps of the SMF revealed that distortion is such that field intensities differing by a factor of up to 36 were measured on the surface of the shelf at locations only few millimetres apart from each other. Furthermore, the most intense of these fields was around five times greater than the ones found inside the incubator (without the metallic shelves in), while the lowest one was around 10 times lower, reaching the so-called hypomagnetic field range. Our findings, together with a survey of the literature on biological effects of hypomagnetic fields, soundly support the idea that SMF inhomogeneities inside incubators, especially due to shelves' holes, are a potential source of confounding and variability in experiments with cell cultures kept in an incubator.

Funder

Slovak Research and Development Agency

Consejo Nacional de Investigaciones Científicas y Técnicas

Government of Slovakia

Structural Funds of EU

Universidad Nacional de San Luis

Fundación Florencio Fiorini

Slovak Republic

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3