Catalytic methyl esterification of colophony over ZnO/SFCCR with subcritical CO 2 : catalytic performance, reaction pathway and kinetics

Author:

Wang Xubin1ORCID,Wang Linlin1,Chen Xiaopeng1,Zhou Dan1,Xiao Han12,Wei Xiaojie1,Liang Jiezhen1

Affiliation:

1. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China

2. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China

Abstract

A heterogeneous catalyst (ZnO/SFCCR) composed of ZnO supported on spent fluid cracking catalyst by wet impregnation was synthesized and applied to the esterification of colophony acids with methanol under subcritical CO 2 conditions. The catalyst was characterized by SEM-EDS, BET, ICP, FTIR, XRD and Py-IR. An experimental set-up involving a new injection technique was designed to promote the heterogeneous methyl esterification, and the subcritical CO 2 played a role in auxiliary acid catalysis (a pH range of 3.54–3.91), increasing the lifespan of ZnO/SFCCR, reducing the viscosity of the system to promote gas–liquid mass transfer. A maximum conversion rate of 97.01% was obtained in a relatively short time of 5 h. Kinetic experiments were performed from 190 to 220°C using a special high-temperature sampling device and analysing aliquots with high-performance liquid chromatography. A new reaction pathway, involving methyl abietate, methyl dehydroabietate, methyl neoabietate and methyl palustrate along with other kinds of colophony acids, was developed. The kinetic parameters were obtained using the Levenberg–Marquardt nonlinear least-squares method, and the activation energies for the isomerizations of neoabietic and palustric acids and for the methyl esterification of neoabietic, abietic, palustric and dehydroabietic acids were found to be 107.09, 113.95, 68.99, 49.85, 75.43 and 59.20 kJ mol −1 , respectively. The results from the kinetic model were in good agreement with experimental values.

Funder

National Natural Science Foundation of China

Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology

Publisher

The Royal Society

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3