Low hybridization temperatures improve target capture success of invertebrate loci: a case study of leaf-footed bugs (Hemiptera: Coreoidea)

Author:

Forthman Michael12ORCID,Gordon Eric R. L.3,Kimball Rebecca T.4ORCID

Affiliation:

1. California State Collection of Arthropods, Plant Pest Diagnostics Branch, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA

2. Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA

3. Department of Ecology and Evolutionary Biology, University of Connecticut, 75N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA

4. Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA

Abstract

Target capture is widely used in phylogenomic, ecological and functional genomic studies. Bait sets that allow capture from a diversity of species can be advantageous, but high-sequence divergence from baits can limit yields. Currently, only four experimental comparisons of a critical target capture parameter, hybridization temperature, have been published. These have been in vertebrates, where bait divergences are typically low, and none include invertebrates where bait-target divergences may be higher. Most invertebrate capture studies use a fixed, high hybridization temperature to maximize the proportion of on-target data, but many report low locus recovery. Using leaf-footed bugs (Hemiptera: Coreoidea), we investigate the effect of hybridization temperature on capture success of ultraconserved elements targeted by (i) baits developed from divergent hemipteran genomes and (ii) baits developed from less divergent coreoid transcriptomes. Lower temperatures generally resulted in more contigs and improved recovery of targets despite a lower proportion of on-target reads, lower read depth and more putative paralogues. Hybridization temperatures had less of an effect when using transcriptome-derived baits, which is probably due to lower bait-target divergences and greater bait tiling density. Thus, accommodating low hybridization temperatures during target capture can provide a cost-effective, widely applicable solution to improve invertebrate locus recovery.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3