The role of reservoir species in mediating plague's dynamic response to climate

Author:

Fell Henry Gillies1ORCID,Jones Matthew1ORCID,Atkinson Steve2ORCID,Stenseth Nils Christian34ORCID,Algar Adam C.5ORCID

Affiliation:

1. School of Geography, University of Nottingham, Nottingham NG7 2RD, UK

2. Centre for Biomolecular Sciences, Nottingham University, Nottingham NG7 2JE, UK

3. Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo 0316, Norway

4. Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Tsinghua University, Beijing 100084, China

5. Department of Biology, Lakehead University, Ontario P7B 5E1, Canada

Abstract

The distribution and transmission ofYersinia pestis, the bacterial agent of plague, responds dynamically to climate, both within wildlife reservoirs and human populations. The exact mechanisms mediating plague's response to climate are still poorly understood, particularly across large environmentally heterogeneous regions encompassing several reservoir species. A heterogeneous response to precipitation was observed in plague intensity across northern and southern China during the Third Pandemic. This has been attributed to the response of reservoir species in each region. We use environmental niche modelling and hindcasting methods to test the response of a broad range of reservoir species to precipitation. We find little support for the hypothesis that the response of reservoir species to precipitation mediated the impact of precipitation on plague intensity. We instead observed that precipitation variables were of limited importance in defining species niches and rarely showed the expected response to precipitation across northern and southern China. These findings do not suggest that precipitation–reservoir species dynamics never influence plague intensity but that instead, the response of reservoir species to precipitation across a single biome cannot be assumed and that limited numbers of reservoir species may have a disproportional impact upon plague intensity.

Funder

Natural Environment Research Council

Publisher

The Royal Society

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3