Affiliation:
1. Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Belgrade 11000, Serbia
2. Institute for Biological Research 'Sinisa Stankovic'—National Institute of Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
Abstract
We previously demonstrated that hypothyroidism increases peroxisomal biogenesis in rat brown adipose tissue (BAT). We also showed heterogeneity in peroxisomal origin and their unique structural association with mitochondria and/or lipid bodies to carry out β-oxidation, contributing thus to BAT thermogenesis. Distinctive heterogeneity creates structural compartmentalization within peroxisomal population, raising the question of whether it is followed by their functional compartmentalization regarding localization/colocalization of two main acyl-CoA oxidase (ACOX) isoforms, ACOX1 and ACOX3. ACOX is the first and rate-limiting enzyme of peroxisomal β-oxidation, and, to date, their protein expression patterns in BAT have not been fully defined. Therefore, we used methimazole-induced hypothyroidism to study ACOX1 and ACOX3 protein expression and their tissue immunolocalization. Additionally, we analysed their specific peroxisomal localization and colocalization in parallel with peroxisomal structural compartmentalization in brown adipocytes. Hypothyroidism caused a linear increase in ACOX1 expression, while a temporary decrease in ACOX3 levels is only recovered to the control level at day 21. Peroxisomal ACOX1 and ACOX3 localization and colocalization patterns entirely mirrored heterogeneous peroxisomal biogenesis pathways and structural compartmentalization, e.g. associations with mitochondria and/or lipid bodies. Hence, different ACOX isoforms localization/colocalization creates distinct functional heterogeneity of peroxisomes and drives their functional compartmentalization in rat brown adipocytes.
Funder
Ministry of Science, Technological Development and Innovation of the Republic of Serbia
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献