A fast-growing dengue virus mutant reveals a dual role of STING in response to infection

Author:

Ng Wy Ching1ORCID,Kwek Swee Sen1,Sun Bo1,Yousefi Meisam1,Ong Eugenia Z.12,Tan Hwee Cheng1,Puschnik Andreas S.3,Chan Kuan Rong1,Ooi Yaw Shin1,Ooi Eng Eong1245

Affiliation:

1. Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore 169857, Singapore

2. Viral Research and Experimental Medicine Center, SingHealth Duke-NUS Academic Medical Center, Singapore 169856, Singapore

3. Chan Zuckerberg Biohub, San Francisco, CA 94158, USA

4. Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore

5. Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore

Abstract

The four dengue viruses (DENVs) have evolved multiple mechanisms to ensure its survival. Among these mechanisms is the ability to regulate its replication rate, which may contribute to avoiding premature immune activation that limit infection dissemination: DENVs associated with dengue epidemics have shown slower replication rate than pre-epidemic strains. Correspondingly, wild-type DENVs replicate more slowly than their clinically attenuated derivatives. To understand how DENVs ‘make haste slowly’, we generated and screened for DENV2 mutants with accelerated replication that also induced high type-I interferon (IFN) expression in infected cells. We chanced upon a single NS2B-I114T amino acid substitution, in an otherwise highly conserved amino acid residue. Accelerated DENV2 replication damaged host DNA as mutant infection was dependent on host DNA damage repair factors, namely RAD21, EID3 and NEK5. DNA damage induced cGAS/STING signalling and activated early type-I IFN response that inhibited infection dissemination. Unexpectedly, STING activation also supported mutant DENV replication in infected cells through STING-induced autophagy. Our findings thus show that DENV NS2B has multi-faceted role in controlling DENV replication rate and immune evasion and suggest that the dual role of STING in supporting virus replication within infected cells but inhibiting infection dissemination could be particularly advantageous for live attenuated vaccine development.

Publisher

The Royal Society

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology,General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3