Abstract
This review makes a case for describing many of the flows observed in our oceans, simply based on the Euler equation, with (piecewise) constant density and with suitable boundary conditions. The analyses start from the Euler and mass conservation equations, expressed in a rotating, spherical coordinate system (but the
f
-plane and
β
-plane approximations are also mentioned); five examples are discussed. For three of them, a suitable non-dimensionalization is introduced, and a single small parameter is identified in each case. These three examples lead straightforwardly and directly to new results for: waves on the Pacific Equatorial Undercurrent (EUC) with a thermocline (in the
f
-plane); a nonlinear, three-dimensional model for EUC-type flows (in the
β
-plane); and a detailed model for large gyres. The other two examples are exact solutions of the complete system: a flow which corresponds to the underlying structure of the Pacific EUC; and a flow based on the necessary requirement to use a non-conservative body force, which produces the type of flow observed in the Antarctic Circumpolar Current. (All these examples have been discussed in detail in the references cited.) This review concludes with a few comments on how these solutions can be extended and expanded.
This article is part of the theme issue ‘Nonlinear water waves’.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Reference43 articles.
1. Segar DA. 2012 Introduction to ocean science . See https://reefimages.com/oceans/oceans.html
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献