AEgIS at ELENA: outlook for physics with a pulsed cold antihydrogen beam

Author:

Doser M.1ORCID,Aghion S.23,Amsler C.4,Bonomi G.56,Brusa R. S.78,Caccia M.39,Caravita R.1011,Castelli F.312,Cerchiari G.13,Comparat D.14,Consolati G.23,Demetrio A.15,Di Noto L.1011,Evans C.23,Fanì M.11011,Ferragut R.23,Fesel J.1,Fontana A.6,Gerber S.1,Giammarchi M.3,Gligorova A.4,Guatieri F.78,Haider S.1,Hinterberger A.1,Holmestad H.16,Kellerbauer A.13,Khalidova O.1,Krasnický D.11,Lagomarsino V.1011,Lansonneur P.17,Lebrun P.17,Malbrunot C.14,Mariazzi S.18,Marton J.4,Matveev V.1920,Mazzotta Z.312,Müller S. R.15,Nebbia G.18,Nedelec P.17,Oberthaler M.15,Pacifico N.1,Pagano D.56,Penasa L.78,Petracek V.21,Prelz F.3,Prevedelli M.22,Rienaecker B.1,Robert J.14,Røhne O. M.16,Rotondi A.623,Sandaker H.16,Santoro R.39,Smestad L.124,Sorrentino F.11,Testera G.11,Tietje I. C.1,Widmann E.4,Yzombard P.13,Zimmer C.11325,Zmeskal J.4,Zurlo N.626

Affiliation:

1. Physics Department, CERN, 1211 Geneva 23, Switzerland

2. Politecnico of Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

3. INFN Milano, via Celoria 16, 20133 Milano, Italy

4. Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria

5. Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy

6. INFN Pavia, via Bassi 6, 27100 Pavia, Italy

7. Department of Physics, University of Trento, via Sommarive 14, 38123 Povo, Trento, Italy

8. TIFPA/INFN Trento, via Sommarive 14, 38123 Povo, Trento, Italy

9. Department of Science, University of Insubria, via Valleggio 11, 22100 Como, Italy

10. Department of Physics, University of Genova, via Dodecaneso 33, 16146 Genova, Italy

11. INFN Genova, via Dodecaneso 33, 16146 Genova, Italy

12. Department of Physics, University of Milano, via Celoria 16, 20133 Milano, Italy

13. Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany

14. Laboratoire Aimé Cotton, Université Paris-Sud, ENS Cachan, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France

15. Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

16. Department of Physics, University of Oslo, Sem Slandsvei 24, 0371 Oslo, Norway

17. Institute of Nuclear Physics, CNRS/IN2p3, University of Lyon 1, 69622 Villeurbanne, France

18. INFN Padova, via Marzolo 8, 35131 Padova, Italy

19. Institute for Nuclear Research of the Russian Academy of Science, Moscow 117312, Russia

20. Joint Institute for Nuclear Research, 141980 Dubna, Russia

21. Czech Technical University in Prague, Brehová 7, 11519 Prague 1, Czech Republic

22. University of Bologna, Viale Berti Pichat 6/2, 40126 Bologna, Italy

23. Department of Physics, University of Pavia, via Bassi 6, 27100 Pavia, Italy

24. The Research Council of Norway, PO Box 564, 1327 Lysaker, Norway

25. Department of Physics, Heidelberg University, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany

26. Department of Civil Engineering, University of Brescia, via Branze 43, 25123 Brescia, Italy

Abstract

The efficient production of cold antihydrogen atoms in particle traps at CERN’s Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth’s gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot–Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n =1–3 and n =3–15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of , radial compression to sub-millimetre radii of mixed plasmas in 1 T field, high-efficiency transfer of to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen—cooling of antiprotons and formation of a beam of antihydrogen—are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’.

Funder

Swiss National Science Foundation Ambizione

Deutsche Forschungsgemeinschaft

European Research Council

Czech Technical University in Prague

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3